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ABSTRACT

Phytoplankton biomass during the austral summer is influenced by freezing and melting cycles as well as oceanographic
processes that enable nutrient redistribution in the West Antarctic Peninsula (WAP). Microbial functional capabilities,
metagenomic and metatranscriptomic activities as well as inorganic 13C- and 15N-assimilation rates were studied in the
surface waters of Chile Bay during two contrasting summer periods in 2014. Concentrations of Chlorophyll a (Chla) varied
from 0.3 mg m−3 in February to a maximum of 2.5 mg m−3 in March, together with a decrease in nutrients; however,
nutrients were never depleted. The microbial community composition remained similar throughout both sampling periods;
however, microbial abundance and activity changed with Chla levels. An increased biomass of Bacillariophyta,
Haptophyceae and Cryptophyceae was observed along with night-grazing activity of Dinophyceae and ciliates (Alveolates).
During high Chla conditions, HCO3

− uptake rates during daytime incubations increased 5-fold (>2516 nmol C L−1 d−1), and
increased photosynthetic transcript numbers that were mainly associated with cryptophytes; meanwhile night time NO3

−

(>706 nmol N L−1 d−1) and NH4
+ (41.7 nmol N L−1 d−1) uptake rates were 2- and 3-fold higher, respectively, due to activity

from Alpha-/Gammaproteobacteria and Bacteroidetes (Flavobacteriia). Due to a projected acceleration in climate change in
the WAP, this information is valuable for predicting the composition and functional changes in Antarctic microbial
communities.
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INTRODUCTION

The Southern Ocean (SO) plays a substantial role in regulating
the global climate, as it sequesters ∼40% of global CO2 (Sabine
et al. 2004; Takahashi et al. 2009; Frölicher et al. 2016), principally
through phototrophic activity (Metzl, Tilbrook and Poisson 1999;
Takahashi et al. 2009; Deppeler and Davidson 2017). Therefore,
changes or disturbances in the SO may produce an unquanti-
fied effect on the carbon (C) cycle. The Western Antarctic Penin-
sula (WAP) is known to be the region with the most extreme
changes in the Southern Hemisphere, and has undergone sub-
stantial warming over the last 50 years. Although the rate of at-
mospheric temperature increase in the WAP has recently been
shown not to increase further (Turner et al. 2016), since 1951 it
has already risen by nearly 3◦C (Meredith and King 2005; Steig
et al. 2009; Ducklow et al. 2012).

Thus, marine ecosystems in the SO are driven to biologi-
cally adapt due to permanent disturbances as a result of cli-
mate change (Montes-Hugo et al. 2009). For example, sea ice
cap retreat increases light penetration and the release of met-
als and some other nutrients (Statham, Skidmore and Tran-
ter 2008; Hawkings et al. 2014; Wang et al. 2014), enhancing
bioavailability and increasing stratification in the water column
due to surface water freshening (Ducklow et al. 2013). These
conditions could favour the development of large algal blooms
(Vernet et al. 2008; Borges-Mendes, Silva de Souza and Tavano
Garcia 2012; Giovannoni and Vergin 2012; Rozema et al. 2017b),
resulting in high carbon uptake within coastal waters (Cavicchi-
oli 2015; Bunse and Pinhassi 2017). On the contrary, reduced sea
ice cover may provoke a deepening of the mixed layer caused by
wind action, promoting a reduction in phytoplankton biomass
(Montes-Hugo et al. 2008) and productivity, shifting the com-
position from mainly diatoms to cryptophytes and other small
flagellates (Walsh, Dieterle and Lenes 2001; Moline et al. 2004;
Ducklow et al. 2007; Borges-Mendes et al. 2013; Kavanaugh et al.
2015; Schofield et al. 2017). Considering the ubiquity and impor-
tant contribution of diatoms to global primary carbon fixation
(up to 25%) (Field et al. 1998), fluctuations in their global produc-
tion, influenced by climate change, may affect carbon transport
to deeper layers (Korb et al. 2010).

Furthermore, climate-inducedmodifications to the structure
and/or function of phytoplankton communitiesmay alter the ef-
ficiency of the biological pump, affecting feedback mechanisms
related to climate change (Le Quéré et al. 2007). Since phyto-
plankton blooms are dependent on the WAP’s physicochemical
and climatic factors, global warming is predicted to trigger sub-
stantialmodifications to bloom structure and distribution. In ad-
dition, this will influence bacterioplankton dynamics (Rozema
et al. 2017b), as well as primary productivity and other pro-
cesses involved in the biogeochemical cycle (Ducklow et al. 2007,
Deppeler and Davidson 2017, Schofield et al. 2017).

In summer, Antarctic waters are dominated by the following:
eukaryotic oxygenic photoautotrophs, including large (>20μm)
and small (<20μm) diatoms and small flagellates (pico- and
nanoplankton, <20μm), such as prasinophytes, haptophytes,
cryptophytes (Prézelin et al. 2000; Varela et al. 2002; Garibotti,
Vernet and Ferrario 2005; Ducklow et al. 2012; Schofield et al.
2017); mixotrophic eukaryotes (Kopczyńska, Fiala and Jeandel
1998;Moorthi et al. 2009;McKie-Krisberg, Gast and Sanders 2015);
and prokaryotic chemoheterotrophs and photoheterotrophs, in-
cluding aerobic anoxygenic phototrophs (Grzymski et al. 2012;
Kirchman et al. 2014; Gonçalves-Araujo et al. 2015; Egas et al.
2017). The combined activities of these microorganisms guar-
antee active carbon (C) and nitrogen (N) recycling within the

trophogenic zone, as well as support food webs (Piquet et al.
2011, Schofield et al. 2017), influence air-sea gas exchange,
and play a major role in atmospheric chemistry and climate
(Hallegraeff 2010; Schmale et al. 2013).

In previous decades, the loss of the ice shelf of coastal
glaciers around the Antarctic Peninsula has left exposed an area
of open water that exceeds 2.4 × 104 km2. This in turn enables
new phytoplankton blooms, which act as carbon sink and lead
to a negative feedback to the climate (Peck et al. 2010). More-
over, the increase in photosynthetic biomass stimulates micro-
bial community activity (Ducklow et al. 2012), including eukary-
otic grazers andmixo- and hetero-trophic bacteria (Wilkins et al.
2013; Buchan et al. 2014; Delmont et al. 2014). Thus, bacterio-
plankton abundance and composition are influenced by changes
in the abundance and composition of phytoplankton blooms
(Williams et al. 2013; Luria et al. 2016; Evans et al. 2017).

Changes in microbial cell size, abundance, composition and
activity might also affect the assimilation and recycling rates
for N and other bioelements (Finkel et al. 2010). High NO3

−

(>10 mmol N m−3) and low NH4
+ (i.e. generally 0.1 mmol N

m−3) concentrations have been reported throughout the WAP,
for example in the Bransfield Sea (Bode et al. 2002); however,
high NO3

− assimilation rates are not maintained consistently
high; meanwhile, NH4

+ is used as a nitrogen source (Olson 1980;
Koike, Holm-Hansen and Biggs 1986; Waldron et al. 1995, Joubert
et al. 2011; Bode et al. 2002). Recently, Pearson et al. (2015) used
metatranscriptomics on diatom-rich communities in contrast-
ing coastal habitats of theWAP, and revealed a functional differ-
entiation in nutrient acquisition; specifically, thatNH4

+ andurea
were the most important forms of reduced N, despite the appar-
ent abundance of NO3

− in the water column. However, during
productive periods, such as a bloom event, N assimilation activ-
ities, such as NO3

− and a NH4
+ uptake, are poorly understood.

Metagenomics, metatranscriptomics and in situ experiments
using stable isotopes 13C and 15N were carried out in the coastal
waters of Chile Bay in the WAP. This study improves knowledge
on the major C and N assimilation processes driven by active
microbial communities, over distinct periods during the austral
summer with varied environmental conditions and Chla con-
centrations. Also, the location is directly affected by freshwater
and particle (e.g. trace metals) input into themarine system due
to the deglaciation of surrounding glaciers. This study area rep-
resents a typical glacial retreat scenario for a bay within Green-
wich Island (Santana and Dumont 2002; Petlicki and Kinnard
2016). The reported trend corresponds to future climate scenar-
ios, including significant sea ice reduction (Arblaster, Meehl and
Karoly 2011; Fan, Deser and Schneider 2014). This study provides
valuable information on energy flowpredictivemodels in chang-
ing systems, such as the regions that are threatened by acceler-
ated climate change.

MATERIAL AND METHODS

Sample site and collection

Surface (2 m) seawater samples were collected from Chile Bay
(62◦27’6’ S; 59◦40’6” W), Greenwich Island, South Shetland Is-
land, Antarctica (Fig. 1). Samples were taken during the follow-
ing dates and times of day; nocturnal on 11 February and 4
March; diurnal on 14 February and 3 March 2014. The aim was
to investigate and compare the microbial communities present
during two contrasting summer periods, with different envi-
ronmental conditions and Chla levels. Near-surface water was
pumped using a hand-operated membrane pump aboard the
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Figure 1. Map of Chile Bay, Greenwich Island, South Shetland Island, Antarctica. The dot indicates the near surface seawater sample point, sampled during February
and March 2014.

small inflatable boat; samples were deposited into 20-L clear
bottles that had been cleaned with HCl 10%; samples were then
transported to the INACH (INstituto Antártico CHileno) labora-
tory at Chile Bay for sample processing and assays.

Environmental variables

During the sampling period, variables such as temperature,
salinity and oxygen were measured using a multiparameter
sensor (OAKTON PCD650). To determine NO2

−, NO3
−, PO4

3− and
Si(OH)4 nutrients, seawater samples were collected in 15-ml
polyethylene flasks, and stored at –20◦C until further analysis.
The WOCE protocol was followed (https://www.nodc.noaa.gov/
woce/woce v3/wocedata 1/whp/manuals/pdf/91 1/gordnut.pdf).
The analysis was conducted using standard colorimetric tech-
niques in a segmented flow Seal AutoAnalyser (Seal Analytical
AA3). The NO3

−+ NO2
− (detection limit 0.05 μM) and PO4

3−

(detection limit 0.02 μM) were measured at submicromolar
levels according to v (1967), whereas Si(OH)4 (detection limit
0.65 μM) was measured according to Thomsen, Johnson and
Petty (1983). For Chla determination, 1 L of seawater was filtered
through a 0.7-μmGF/F glass fibre filter, and samples were frozen
until acetone extraction and fluorometric determinations were
conducted following Strickland and Parsons (1972). For NH4

+

determination, samples were collected in glass flasks and
analysed as described by Solorzano (1969) with a detection limit
of 0.05 μM.

0.1 and 15N assimilation assays and rate
determinations

To determine the isotopically-labelled assimilation of carbon
and nitrogen, dual injections of 13C and 15N tracers were carried
out in duplicate in polycarbonate bottles (0.58 L), during both
sampling periods and under light and dark incubation condi-
tions. For C uptake, 0.5 ml of H13CO3 was added (3.645 mg 13C
ml−1, equivalent to 0.5 μmolesml−1), corresponding to ∼10% en-
richment according to natural DIC concentrations reported for
the coastal WAP (Hauri et al. 2015). For N uptake, 15NH4Cl (99% at
0.5 μmol ml–1) and K15NO3

− (99% at 0.5 μmol ml–1) were added
in doses that ensured <10% enrichment considering natural
concentrations, following data in Slawyk and Raimbault (1995).
Independent of sampling time (i.e. February or March), light
(uncovered bottles) and dark (covered bottles) incubations were
performed. All bottles were incubated at Chile Bay pier for 24h,
at 1m depth under in situ conditions. Subsequently, samples

were filtered through gentle vacuum filtration (<100 mm Hg)
through pre-combusted GF/F glass fibre filters. Filters were dried
at 60◦C and stored until analysis by continuous-flow isotopic ra-
tio mass spectrometry (Finnigan Delta Plus IRMS, Universidad
de Concepción) (Fernandez, Farı́as and Alcamán 2009).

Daily rates of autotrophy were expressed as mg L−1 d−1 ac-
cording to Raimbault et al. (1999):

ρDI 13C =
⎡
⎣ (%RPOC − Rn)∗

(
POC
12∗Vf

)

%RDIC

⎤
⎦

∗

12 (1)

%RDIC =
⎡
⎣

(
V13C∗13DIC

Vb

)
+ DICi

∗0.01112

DICi − V13C∗13DiC
Vb

⎤
⎦

∗

100 (2)

where Vf represents the filtered volume and POC (in μg) is the
amount of particulate organic carbon recovered from the filter
after incubation, andmeasured bymass spectrometry. %RDIC in-
dicates excess tracer enrichment following inoculation (To), cal-
culated using Equation (2). %RPOC is the 13C enrichment in the
filter after incubation, as measured by the tracer mass. In Equa-
tion (2), V13C is the volume of 13C added to the sample during
inoculation, while 13DIC accounts for the tracer concentration
added to the sample (3.6456 mg 13C ml−1). DICi represents the
initial amount of DIC in the sample. Vb is the volume in the in-
cubation bottle (0.58 L).

Rates of NH4
+ (ρNH4

+) and NO3
− (ρNO3

−) assimilation were
determined by estimating the transport rate of 15N-labelled DIN
from theDIN pool to the PONpool, and the net DIN uptake (ρDIN,
nmole L−1 d–1) was calculated according to the following equa-
tion (Dugdale and Wilkerson 1986):

ρDIN = RPON

RDIN × t
× [PON] (3)

where RPON and RDIN represent percentage of excess enrichment
of 15N in the PON and DIN pools, respectively, [PON] represents
the final PON concentration, and t represents the duration (h) of
incubation.

DNA and cDNA extractions

Microbial biomass for DNA and cDNA analysis, from diurnal and
nocturnal samples collected over the two periods (with different
Chla levels), were concentrated onto 0.22-μm pore size Sterivex
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units (Durapore; Millipore), achieved by prefiltering 3–4 L of near
surface seawater (2 m depth) through a 200-μm nylon mesh fol-
lowed by a 20-μm polycarbonate filter using a Cole Palmer Sys-
tem peristaltic pump Model no. 7553–70 (6–600 rpm), at 50–100
mlmin−1. The RNA filters were preserved in RNAlater andmain-
tained at –80◦C with the DNA filters (one day and one night per
sampling period) until later analysis in the laboratory (at Pontif-
ical Catholic University of Chile).

DNA was extracted according to a modified protocol de-
scribed in Dı́ez, Pedrós-Alió and Massana (2001). Briefly, filters
were resuspended in lysis buffer (10 mM Tris-HCl pH = 8.0, 1
mMEDTA, 0.15MNaCl, 1% sodiumdodecyl sulphate, 0.1mgml-1

Proteinase K) and sterile glass beads. The mix was incubated at
37◦C for 1 h with vortex mixing every 15 min. NaCl and cetri-
monium bromide were added to reach a final concentration of
0.6 M and 1%, respectively, and the mix was incubated at 65◦C
for 10 min. DNA was extracted with phenol-chloroform-isoamyl
alcohol (25:24:1), and the residual phenol was eliminated with
chloroform-isoamyl alcohol (24:1). The extract was cleaned up
by two successive precipitations with cold isopropanol and 70%
ethanol. Nucleic acids were quantified using the Qubit R© 2.0 Flu-
orometer (Thermo Fisher Scientific, Inc.), quality was assessed
by spectrophotometry (A260/A280 ratio) and integrity by stan-
dard agarose gel electrophoresis. A set of 2 RNA samples (from
14 February and 4 March) were extracted using the Qiagen Kit,
according to the manufacturer’s specifications, and two addi-
tional RNA samples (from 11 February and 3 March) were ex-
tracted using TRIzol R© (Invitrogen) and the RNA Clean & Con-
centrator kit (Zymo Research, USA). The quality and quantity
of the total extracted RNA was determined using a Qubit R© 2.0
Fluorometer (ThermoFisher Scientific, Inc.), and the integrity
was checked by electrophoresis in an RNase-free 1% agarose
gel. DNase treatment (TURBO, Applied Biosystems, USA) was
performed on 1 μg of RNA from all samples to eliminate any
remaining DNA.

Total DNA (20 ng ml−1) and RNA (1 μg) from February 14 (day)
and March 4 (night) were sequenced by Illumina Hi-Seq tech-
nology (DNA Sequencing & Genotyping Center, Delaware, USA).
Briefly, DNA libraries were prepared using a NEXTflex Rapid
DNA-Seq kit from Bio Scientific, while total RNA was first de-
pleted of ribosomal RNA using RiboZero and RNAseq libraries;
then samples were prepared using a NEXTflex Rapid Directional
RNA-Seq kit fromBio Scientific. Additionally, RNA from11 Febru-
ary (night) and 3 March (day) were sequenced by Illumina Hi-
Seq technology (Roy J. Carver Biotechnology Center, Illinois), and
rRNA was removed using a Ribozero kit (Illumina). The RNAseq
libraries were prepared with Illumina’s ‘TruSeq Stranded mR-
NAseq Sample Prep kit’ (Illumina). The libraries were quanti-
tated by qPCR and sequenced on one lane for 151 cycles from
one end of the fragments on a Hi-Seq 4000 using a Hi-Seq 4000
sequencing kit version 1. FastQ files were generated and de-
multiplexed with the bcl2fastq v2.17.1.14 conversion software
(Illumina). Reads of 150 nt in length were obtained.

High-throughput sequencing analysis

Quality assessment and trimming
Briefly, a quality assessment of metagenomic and metatran-
scriptomic data was performed with the software FastQC (An-
drews 2010). Quality trimming of sequenceswas performedwith
Cutadapt software (Martin 2011), with a hard clip of the first
five and nine bases of 5′ for metagenomic and metatranscrip-
tomic samples, respectively, and quality trimming of the 3′ with
a minimum quality of 30. Additionally, sequences with N were

discarded to avoid ambiguity in assignation. To retrieve reliable
protein information, a minimum cut-off length of 30 bp was es-
tablished.

For the metatranscriptomic data, the remaining rRNA se-
quences were removed using SortMeRNA (Kopylova, Noé and
Touzet 2012). Primarily, the Silva database version 128 SSU and
LSU (Quast et al. 2013), and the Rfam 5 s and 5.8 s databases were
indexed to remove the maximum rRNA sequences, then, each
sample was filtered with all indices and other parameters. Only
non-aligning reads were considered for further analyses.

Taxonomic and functional profiles
To generate the taxonomical and functional profiles of each
sample, alignment with Diamond v8.1 (Buchfink, Xie and Hu-
son 2015) against the NCBI non-redundant protein database was
carried out, with a maximum e-value of 1e-10 and a minimum
score of 50. Then, the resulting alignment was presented using
the lowest common ancestor algorithm implemented inMEGAN
6 (Huson et al. 2007), with a minimum score of 50 and default
parameters. Functional assignation was carried out using the
NCBI-taxonomic mapping file and the SEED, eggNOG and Inter-
pro functional databases. All files frommetagenomes andmeta-
transcriptomes are deposited in NCBI as BioProject SUB3293570.

Statistical analysis

Between sampling periods, differences in biomass (measured
as Chla), uptake rates and differential expression of normalised
counts of metatranscriptomic assigned reads (retrieved from
Megan) were calculated using R (R Core Team) package DESeq
(Anders and Huber 2010), following the established procedures.
The threshold value for statistical difference was set as P < 0.05.
To uptake experiments, an ANOVA one-way test was carried out
to determine statistical difference between samples.

RESULTS

Environmental parameters

Table 1 presents the environmental variables obtained from a
fixed location in Chile Bay (Fig. 1) during February and March of
2014. From February to March, seawater temperature increased
from –0.1◦C to 0.3◦C, and salinity from 33.1 to 33.9, respectively.
Additionally, air temperature increased during the sampling pe-
riod from –2 to 2 ◦C, as well as wind speed and gusts (mainly
N-NE: 58%) (Fuentes et al. submitted). Chla concentrations in-
creased significantly (P < 0.009) from relatively low values (0.31
mgm−3) in February to a 7-fold increase (2.53 mgm−3) in March.
This rise in biomass coincides with an increase in oxygen satu-
ration (i.e. from 151% in February to 190% in March), probably
associated with photosynthetic activities. In general, nutrient
concentrations (mainly NO3

− and HPO4
2−) decreased slightly at

the end of the sampling period, when the Chla concentration
reached its maximum. Concentrations of nutrients in February
and March also decreased from 22.4 to 17.7 μM for NO3

−, from
1.86 to 1.28 μM for HPO4

2− and from 46.8 to 37.9 μM for Si(OH)4;
however, NH4

+ maintained submicromolar concentrations. N:P
ratio values (between 12.1 and 13.9) were slightly lower than
the expected Redfield ratio (16:1) (Redfield 1958), demonstrat-
ing that the system is not N limited (Table 1). The low N:Si ratio
(0.451:0.482) denoted the high availability of Si(OH)4.
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Table 1. Environmental variables obtained from a predetermined location in Chile Bay during February and March 2014.

Date Time
Depth
(m)

Temperature
(◦C) Salinity O2 (%)

Chla (mg
m-3)

NO2-
(μM)

NO3-
(μM)

PO4-
(μM)

Si(OH)4
(μM) N:P N:Si

11.02.14 Night 3 –0.1 33.1 151 0.31 0.166 22.4 1.86 46.8 12.1 0.482
14.02.14 Day 3 –0.1 33.2 149 0.36 0.155 19.5 1.61 43.6 12.2 0.451
03.03.14 Day 3 0.3 33.5 168 2.38 0.160 20.2 1.59 44.1 12.8 0.462
04.03.14 Night 3 0.3 33.9 190 2.53 0.098 17.7 1.28 37.9 13.9 0.469

Figure 2. (a) Bacteria and (b) Eukaryotic abundance and transcript numbers during both sampling periods, in Chile Bay. Bacteria were predominantly represented by
Proteobacteria and Bacteroidetes; meanwhile Eukaryotes were represented by Stramenopiles, Haptophytes, Cryptophyta and Alveolates.

Microbial community structure, composition and
transcriptional expression

Metagenomic analyses showed that Bacteria were consistently
more abundant than eukaryotes over both sampling periods
with different Chla levels (Supplementary Data, Fig. S1a); how-
ever, metatranscriptomics showed that eukaryotes were the
most active microorganisms, attaining up to 35% and 70% of the
total transcript numbers obtained over the two contrasting peri-
ods (Supplementary Data, Fig. S1b). Conversely, Archaea, repre-
sented mostly by Thaumarchaeota, attained ≤0.2% of the total
relative abundance (including Bacteria, Archaea and Eukaryots)
from metatranscriptomic transcript reads, indicating no differ-
ence between the two periods.

For Bacteria, Proteobacteria and Bacteroidetes phyla pre-
sented a greater relative abundance and activity during sum-
mer, with no daily variation in composition, and a slight
increase (P < 1) in the total transcript numbers obtained dur-
ing period of increased Chla or bloom event (Supplementary
data, Fig. S2a). During the increased Chla period, Alphapro-
teobacteria, such as Roseobacter, Candidatus Pelagibacter and
Planktomarina, and Gammaproteobacteria, such as Alteromonas,
Marinobacterium, Pseudoalteromonas and Oceanospirillales, were
observed more frequently (Supplementary Data, Fig. S2a). Dur-

ing the period of lower Chla, changes in diurnal and noctur-
nal transcript abundance were observed for Alphaproteobacte-
ria and Gammaproteobacteria. During the period with higher
Chla, similar diurnal patterns were observed (Supplementary
Data, Fig. S2a). Furthermore, Bacteroidetes, specifically domi-
nated by Flavobacteriia and Polaribacter, were always dominant
and active at daytime throughout both sample periods (Supple-
mentary Data, Fig. S2b).

Haptophytes (Isochrysidales, Phaeocystales and Prym-
nesiales) were quite active eukaryotes during both periods,
with an average of 19.3% and 22.8% of the total abundance of
transcriptomic reads, respectively (Fig. 2b; Supplementary Data,
Fig. S3b). Stramenopiles mainly represented by Bacillariophyta
accounted for 58.6% and 31.5% of the total abundance of
transcriptomic reads, respectively (Fig. 2b; Supplementary
Data, Fig. S3a). Specifically, Bacillariophyta were represented
by small diatoms, such as Fragilariopsis and Thalassiosira,
demonstrating similar activities throughout different pro-
ductive periods (Supplementary Data, Fig. S3a). During the
period of lower Chla, diatoms reached 70.2% of the total
eukaryotic transcripts in diurnal sampling, accompanied by
minority groups, such as cryptophytes (Teleaulax/Guillardia:
6.8%), alveolates (Stichotrichia: 10.1%) and haptophytes
(12.8%) (Fig. 2b). During this period, haptophytes were
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Figure 3. Recorded daily uptake rate of carbon (H13CO3), ammonium (15NH4Cl) and nitrate (K15NO3) under in situ conditions throughout the 2014 summer sampling

period, in Chile Bay, considering high and low Chla events. The white bars represent incubations exposed to light, and black bars the incubations maintained in
darkness. Error bars represent duplicate replicates.

mainly represented by Phaeocystales (84.6%) and primarily
dominated by the genus Phaeocystis (Supplementary Data,
Fig. S3b). In contrast, the number of diatom-related transcripts
in nocturnal samples was reduced to 46.9%, while haptophytes
transcript numbers increased to 25.8% (Fig. 2b; Supplementary
Data, Fig. S3), with shared activity by Isochrysidales (31.8%)
(e.g. Emiliania), Phaeocystales (38.0%) (e.g. Phaeocystis) and
Prymnesiales (30.2%) (e.g. Chrysochromulina). Another highly
active nocturnal group was the alveolates (Ciliophora and
Dinophyceae), which almost doubled (18.8%) their transcript
abundance numbers compared to daytime (Fig. 2b).

Throughout the summer, as Chla increased, diatoms de-
creased their total transcript numbers (34.1%) (Fig. 2b), whereas
haptophytes changed in abundance (38.4%), with Phaeocystales
(Phaeocystis) becoming the most active eukaryotic primary pro-
ducers during both day (65.3%) and night (86.4%). Moreover, dur-
ing the nocturnal time at the increased Chla period, alveolates
were exclusively represented by the Ciliophora from the genus
Stylonychia, representing up to 63.1% of the total abundance of
transcript reads (Fig. 2b).

Daily in situ inorganic C and N assimilation rates and
associated active microbes

C-assimilation rates were higher in incubations exposed to light
compared to dark incubations, during both Chla sampling peri-
ods. On average, C-assimilation rates under light exposure were
723 ± 49 nmol L−1 d−1 during February, the lower Chla period,
compared to 2516 ± 397 nmol L−1 d−1 during March, with higher
Chla (Fig. 3; Supplementary Data, Table S1); this represents an
3.5-fold increase (P < 0.001) throughout the season. Moreover,
C-assimilation in dark conditions increased 2.7-fold during the
period of higher Chla (1804 ± 171 nmol L−1 d−1) compared to the
lower Chla period (651 ± 359 nmol L−1 d−1); however, these re-
sults were not significant (P < 0.895).

Gene markers associated with photosynthesis, the Calvin-
Benson cycle and 3-hydroxypropionate bicycle (3-HP) were iden-

tified using metatranscriptomes to define different strategies of
active microbial CO2 fixation between the contrasting summer
periods (Fig. 4a). The results indicated that although photosyn-
thesis occurred throughout the entire sampling period, it was
three times higher (P< 0.7) during the higher Chla period. In con-
trast, the Calvin-Benson cycle was responsible for the majority
of C-assimilation, and was three times higher (P < 0.6) than the
3-HP pathway. The higher transcript numbers associated with
C-assimilation observed diurnally could be correlated with the
3-fold increase in carbon incorporation rates observed during
light incubations in March (Fig. 3).

In order to correlate photosynthesis with specific active mi-
crobial taxa during both sampling periods, transcripts associ-
ated with the psbA gene (D1 protein of photosystem II) were
identified. Gene transcripts were associated with 2.5% of bac-
teria and 97.5% of eukaryotes (Fig. 4b). Among bacteria, all
transcripts were affiliated with Cyanobacteria, such as Chroococ-
cidiopsis and Microcoleus, during the period of lower Chla, and
with Leptolyngbya and Synechococcus during the period of higher
Chla (Fig. 4; Supplementary Data, Table S2). Among eukaryotes,
cryptophytes, such as the Guillardia genera (70%–100% identity),
haptophytes from genus Phaeocystis (78% identity) and several
members of Bacillariophyta (51% identity) (e.g. Thalassiosira and
Fragilariopsis) were dominant during both sampling periods.
Cryptophyta is the most photosynthetically active eukaryote
during the summer period.

The Calvin cycle, here represented by the rbcL gene (a subunit
of ribulose bisphosphate carboxylase), showed similar patterns
to the psbA gene. Bacteria represented only 0.38% of transcripts
and were mostly associated with Proteobacteria and Fusobacte-
ria (Fusobacterium), with 99.6% of the transcripts affiliated with
the same active eukaryotic groups observed in photosynthesis
(Supplementary Data, Table S2). During this cycle, Bacillario-
phyta and cryptophyte transcript numbers increased 4.7 and 2.9
times, respectively, indicating increased activity during periods
of higher Chla (Fig. 4b). Thus, cryptophytes were also the most
active eukaryotes related to CO2 fixation processes during the
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Figure 4. Principal pathways of carbon acquisition and taxonomy between the two sampling periods, higher and lower Chla. (a) Transcripts number of mean C
associated genes (psbA: Photosynthesis; rbcL: Calvin Benson cycle; accA and psaA:3-Hidroxypropionte bicycle), and (b) associated activemicrobial members responsible

for each route.

summer sampling period. Moreover, only 1% of C-assimilation
was associated with 3-HP, determined by the accA (Acetil-
CoA carboxylase) and pccA (Propionyl-CoA carboxylase) gene
markers. These are associated with gamma-proteobacteria (e.g.
Pseudomonas) and Bacteroidetes (e.g. Flavobacterium) (Fig. 4b;
Supplementary data, Table S2), and presented no variation be-
tween distinct Chla periods.

Contrary to C-assimilation, inorganic N-assimilation (i.e.
NH4

+ and NO3
−) rates had two to three times greater uptake val-

ues in the dark bottles compared incubations exposed to light.
There was no significant difference (P < 0.558) between samples
collected during different Chla periods (Fig. 3; Supplementary
Data, Table S1). NO3

− assimilation rates were an order of mag-
nitude higher (P = 1) than NH4

+ assimilation rates. The average
NO3

− assimilation rate increased from 258 ± 5.7 in February to
706 ± 43.5 nmol L−1 d−1 in March.

Subsequently, the assimilation of both NH4
+ and NO3

− into
biomass was evaluated according to the total glnA and narB
gene transcripts, respectively, obtained from metatranscrip-
tomes (Fig. 5a). Functional taxonomic associations were iden-
tified during both periods of higher and lower Chla (Fig. 5b).
In general, both glnA and narB transcript numbers increase
2-fold to 3-fold (P < 0.9) during the period of higher Chla,
as well as the registered N-incorporation rates (Fig. 3). Con-
trary to C-assimilation processes, dominated by eukaryote ac-
tivity (>90%) as well as active bacteria (<10%), Bacteria and
Archaea represented the most active organisms in nitrogen

routes. The only exception was for NO3
− assimilation, where

Bacillariophyta had a low (0.8%) but active presence during the
higher Chla period (Fig. 5b). Bacteria, Proteobacteria and Bac-
teroidetes were the major groups involved in the N-assimilatory
routes. Alphaproteobacteria (e.g. Candidatus Pelagibacter) and
Gammaproteobacteria (e.g. Pseudoalteromonas) were responsible
for∼ 99.9% ofNH4

+ assimilation (SupplementaryData, Table S2).
In contrast, Alteromonas, Marinobacter, Alcanivorax and Pseudoal-
teromonas (Proteobacteria) as well as Polaribacter and Flavobac-
terium (Bacteroidetes) contributed a total of 99.1% to NO3

− up-
take (Supplementary Data, Table S2). Finally, according to the
number of total amoA gene transcripts obtained frommetatran-
scriptomes, Thaumarchaeota, specifically members of genusNi-
trosopumilus, contributed to 100% of the nitrification process
(Supplementary data; Fig. S4).

DISCUSSION

Chile Bay is the main inlet of Greenwich Island. There is lim-
ited information available on oceanographic parameters and
processes within this Bay (Cornejo and Arcos 1990; Torres et al.
2006). In general, circulation is influenced by bottom topogra-
phy and wind patterns, resulting in a short water residence
time. Water enters from Bransfield Strait into the subsurface
over the western side, and leaving superficially on the eastern
side (Cornejo and Arcos 1990). Despite the fact that no CTD data
were collected from the sampling site in Chile Bay during the
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Figure 5. Mean pathways for nitrogen assimilation and its associate taxonomy during both sampling periods, higher and lower Chla. (a) Transcripts number of mean

genes (glnA: Ammonium oxidation; narB: nitrate reduction), and (b) associated active microbial members responsible for each route.

summer of 2014, subsequent CTD data taken at the same site
in the summer 2017 indicate that there is no marked halocline
within the top 50 m of the water column. Moreover, Chile Bay
appears to be subjected to ongoing scenarios of accelerated ice
melt, due to climate change (Pritchard et al. 2012), making the
site a reference for improving understanding of how biological
processes, driven by microbial communities, respond to envi-
ronmental changes.

Environmental variables change throughout the austral sum-
mer. During the summer of 2014, the air and surface water
temperature in Chile Bay were similar to those recorded within
other WAP regions (Meredith and King 2005), and salinity (33.1–
33.9) was also consistent with other records within the WAP
(Meredith and King 2005; Trimborn et al. 2015). Within Chile
Bay, inorganic nitrogen, nutrients and HPO4

2− levels were sim-
ilar to levels recorded in regions close to the WAP (Schloss
and Ferreyra 2002; Mendes et al. 2012, 2013; Trimborn et al.
2015). In addition, the dissolved inorganic N:P ratio found was
close to the expected regional Redfield ratio (12:1) reported
for WAP. Over the WAP continental shelf, nutrients are sup-
plied to the upper ocean via upwelling and mixing of Circum-
polar Deep Waters (CDW) (Prézelin et al. 2004). Additionally,
[NO3–]/[PO4

3−] ratios were similar to reports for northern Mar-
guerite Bay by Henley et al. (2017), identifying that nutrients sup-
plied to the surface ocean from Upper CDW, with an N:P ratio
of 12.9 ± 0.9, coincides with the ratio taken up by phytoplank-
ton in the productive upper ocean. This also coincides with nu-
trient distribution models from the SO surface waters (Arrigo

et al. 1999; Weber and Deutsch 2010), where there is an estab-
lished N:P ratio of 12:1, compared with an N:P ratio of 20:1 in the
sub-Antarctic zone; these ratio variations are governed by the
biogeographic differences in planktonic species composition
and biological N utilisation (Weber and Deutsch 2010). High
Si(OH)4 concentrations reported in this study agree with the lev-
els found in the Southern Polar Front. The observed low N:Si ra-
tio suggests a relation between the presence of diatoms through-
out the entire summer period, as they are the only algae family
that build silica-based frustules (Weber and Deutsch 2010).

The increase of Chla towards the end of the 2014 summer,
jointly with the apparent consumption of nutrients through bi-
ological activities, as well as O2 production via photosynthe-
sis, suggests the fact that a bloom event occurred during the
March sampling in Chile Bay. Samples were composed mainly
by diatoms and small flagellates, such as cryptophytes and hap-
tophytes. This coincides with previous reports of late summer
phytoplankton blooms in the northern WAP subregion, where
Chla contents greater than 5 mg m–3 were observed (Montes-
Hugo et al. 2009). The relatively low accumulation of biomass
with respect to other coastal systems may be due to differ-
ences in the residence times within semi-enclosed systems
(Dellapenna, Kuehl and Schaffner 1998). In Chile Bay, strong
surface currents are observed (up to 40 cm s−1), as well as
wind-driven water circulation (Cornejo and Arcos 1990; Fuentes
et al. submitted). This may lead to the exportation of biomass
to adjacent waters outside of the bay, a mechanism that has
been suggested to control phytoplanktonic bloom growth and
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duration (Brandini and Rebello 1994; Schloss et al. 1997; Rozema
et al. 2017a,b). Finally, the observed phytoplankton composition
from this study agrees with previous reports, and is closely de-
pendent on the annual and interannual ice cover cycle, as well
as on the availability of hours of daylight and the mixed layer
depth (Schloss et al. 1997; Schloss, Ferreyra and Curtosi 1998;
Smith et al. 2008; Venables, Clarke and Meredith 2013; Rozema
et al. 2017b).

Phytoplankton bloom control on microbial community
structure and activity

The microbial structure of near surface seawater in Chile Bay
during the austral summer followed a similar pattern to nearby
regions (Murray et al. 1998; Zeng et al. 2012). Bacteria were the
most abundant domain, and Archaea represented only 1% of the
total picoplankton assemblage (Church et al. 2003). In Chile Bay,
bacteria mostly belong to Proteobacteria and Bacteroidetes, as
similarly observed in other polar regions (Malmstrom et al. 2007;
Galand et al. 2009; Alonso-Sáez et al. 2010; Bowman et al. 2012;
Zeng et al. 2012).

Although bacterioplankton populations in Chile Bay vary
slightly over different production periods, major active orders
and classes remained similar throughout the season. Also,
C- and N-assimilation activities by bacterioplankton remained
low compared to eukaryotes with peak photoautotrophic activi-
ties during the period of high Chla. These phototrophic eukary-
otes have the ability to sustain the entire foodweb, as previously
suggested for the summer season in the SO (Weber and El-Sayed
1987; Loeb et al. 1997; Saba et al. 2014). Furthermore, the ubiquity
and high transcript numbers retrieved for diatoms, such as Frag-
ilariopsis, aswell as of cryptophytes, such asGuillardia, during the
entire sampling period could indicate a potential future impact
of increasing sea ice and glacial melt during the summer period,
as these eukaryotic members are known to be closely related to
ice environments (Moline et al. 2004; Schofield et al. 2017).

Haptophytes, such as Phaeocystis antarctica, were also abun-
dant in Chile Bay and are ubiquitous bloom-forming microor-
ganism in these coastal waters (Schoemann et al. 2005; Delmont
et al. 2014). Phaeocystis blooms significantly impact the local nu-
trient and sulphur budget, impacting their relevant cycles (Van
Boekel and Stefels 1993; Yager et al. 2012). Furthermore, blooms
strongly influence the bacterial community structure in Antarc-
tica (Delmont et al. 2014). In accordance with this study, dur-
ing the high productivity period, the highly abundant and active
Phaeocystis seem to coexist with bacterial taxa, such as Polarib-
acter (Bacteroidetes) and Pelagibacter (Proteobacteria) (Delmont
et al. 2014).

In addition to Bacillariophyta, cryptophytes and haptophytes
(mainly Phaeocystales), relative abundance and activity of alve-
olates (mainly Ciliophora and Dinophyceae) increased through-
out the summer sampling period, and reached its maximum
in March. In particular, ciliates have been reported as an im-
portant predation pressure on phytoplankton blooms (Schofield
et al. 2017), which leads to a significant increase in activity
during dark periods (i.e. nocturnal) in Chile Bay, whereas di-
atoms and smaller-sized phytoplankton populations decrease.
In the SO, small zooplankton, such as heterotrophic flagellates
(Dinophyceae) and ciliates, carry out important biological con-
trol activities on phytoplankton (and bacterioplankton). Addi-
tionally, grazing from vertical migration has also been noted
(Le Quéré et al. 2016). The potential increase in grazing activ-
ity by Alveolata on phytoplankton may represent an important

process in the reduction of phytoplankton bloom biomass in
Chile Bay as well as in other regions of the SO (Ratti, Knoll and
Giordano 2013).

Summer production driven by carbon and nitrate and
ammonium assimilation

In general, high productivity has been found along theWAP,with
average integrated primary production rates varying from 600
mg C m−2 d−1 during summer phytoplankton blooms (El-Sayed
and Taguchi 1981; Arrigo, van Dijken and Bushinsky 2008) up
to 7000 mg C m−2 d−1 within the coastal zone of the North-
ern Marguerite Bay (Rozema et al. 2017a). In Chile Bay, sim-
ilar to WAP (Anvers Island) (Williams et al. 2012), the rela-
tively high observed autotrophic carbon assimilation was driven
by the activity of oxygenic photoautotrophs, such as Crypto-
phyta (i.e. the main active representative in terms of photo-
synthesis and CO2 fixation), Haptophyta and Bacillariophyta.
In addition, carbon fixation using the 3-hydroxypropionate
bicycle, assigned to chemoautotrophic microorganisms (dark
C-assimilation), primarily Gammaproteobacteria (Pseudomonas)
and some CFB (Cytophaga-Flavobacterium-Bacteroides) mem-
bers, contributed <1% of the total C-assimilation, compared to
>99% of light-dependent C-fixation performed by phytoplank-
ton. Dark C-assimilation by these two groups of organisms is
both important to and relevant for the total carbon cycle bud-
get in this extreme marine ecosystem.

With respect to N assimilation, the literature suggests that
small phytoplankton exhibited a greater preference for NH4

+

compared to than large diatoms (Owens, Priddle and White-
house 1991; Bode et al. 2002). The findings from Chile Bay re-
vealed high numbers of nocturnal glnA transcripts with respect
to narB genes. However, NH4

+-assimilation rates are five times
lower than NO3

− assimilation rates, suggesting that NH4
+ is be-

ing used at the same rate it is being produced by Proteobacte-
ria, which appear to be the most active microbes in this process.
Tupas et al. (1993) reported that 8%–25% of the total NH4

+ up-
take in Antarctic coastal water is associated with bacterial activ-
ity during a phytoplankton bloom. In this case, the 2014 micro-
bial bloom registered for Chile Bay demonstrated the presence
of organisms that preferentially assimilate NO3

−, or use both
nitrate and ammonium as nitrogen sources (Lancelot, Mathot
and Owens 1986). This is contrary to reports from natural as-
semblages, where phytoplankton consistently prefers to use
NH4

+ rather than NO3
−. Studies have indicated that instead of

a gradual change from NO3
−-based to NH4

+-based production
during summer (Tamminen 1995), secondary blooms may de-
velop in areas such as the Western Bransfield Strait that use
NO3

− as a predominant nitrogen source (Bode et al. 2002). This
NO3

− preference coincides with the high NO3
− concentrations

reported in the WAP for near-surface open-ocean waters. How-
ever, it should be considered that locally recycled NH4

+ (high
turnover time) may also make an important contribution to
phytoplankton nutrition, mostly associated with smaller-sized
phytoplankton.

In addition, nitrification processes may be an important
source of recycled NO3

− to the primary production budget in the
WAP. In fact, Archaeal ammonia oxidation has provided contri-
butions of 3%–6% of annual primary production by chemoau-
totrophic carbon fixation (Tolar et al. 2016). In Chile Bay, active
nitrification process by Thaumarchaeota, from the genus Ni-
trosopumilus, was indicated by the presence of transcripts of the
amoA gene (Supplementary data, Fig. S4). In the future, it is
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important to gain an improved understanding of the nitrifica-
tion contribution to primary production in Chile Bay, as well as
secondary N2O production, especially when an undersaturation
of N2O has been recently reported in polar waters, such as those
from the polar mixed layer at the Arctic Ocean (Verdugo et al.
2016).

CONCLUSIONS

Chile Bay is a dynamic system subjected to ongoing ice melt
caused by climate change. This is also the case for other coastal
areas withinWAP. Therefore, Chile Bay functions as a good refer-
ence to further understanding ofmicroorganism response under
these conditions.

Phytoplankton bloom of active diatoms and small flagellates,
such as members of cryptophytes and haptophytes, during the
summer (i.e. February and March) were accompanied by an in-
crease of Chla of up to 2.5 mg m−3, reflecting active biological
production by photoautotrophs that could potentially sustain
the food web during summer.

Phototrophic light-dependent C-fixation accounted for up
to 99% of total C-assimilation, whereas darkness-dependent
C-fixation accounting for <1%. These relatively high rates of
primary production based on carbon (photosynthesis, Calvin-
Benson and 3-HP), compared to temperate waters such as in the
Pacific Ocean, were by >90% associated with eukaryotes (cryp-
tophytes, haptophytes and diatoms) and <10% associated with
Bacteria (Cyanobacteria, Fusobacteria, Proteobacteria and Bac-
teroidetes). Proteobacteria and Bacteroidetes were the most ac-
tive microbes in NH4

+ and NO3
− assimilations.

Grazing of Alveolates (mainly members of Ciliophora) during
nocturnal vertical migration plays a potentially important role
biologically on controlling phytoplankton (and bacterioplank-
ton). Within the region, variations in phytoplankton biomass,
composition and size caused by climate change (and mixing
within the water column) may impact grazers as well as higher
trophic levels in the food web.

SUPPLEMENTARY DATA

Supplementary data are available at FEMSLE online.
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Gonçalves-Araujo R, Silva de Souza M, Tavano VM et al. Influ-
ence of oceanographic features on spatial and interannual
variability of phytoplankton in the Bransfield Strait, Antarc-
tica. J Mar Syst 2015;142:1–15.

Grzymski JJ, Riesenfeld CS, Williams TJ et al. A metage-
nomic assessment of winter and summer bacterioplank-
ton from Antarctica Peninsula coastal surface waters. ISME
J 2012;6:1901–15.

Hauri C, Doney SC, Takahashi T et al. Two decades of inorganic
carbon dynamics along theWest Antarctic Peninsula. Biogeo-
sciences 2015;12:6761–79.

Hawkings JR, Wadham JL, Tranter M et al. Ice sheets as a sig-
nificant source of highly reactive nanoparticulate iron to the
oceans. Nat Commun 2014;5:3929.

Hallegraeff GM. Ocean climate change, phytoplankton commu-
nity responses, and harmful algal blooms: a formidable pre-
dictive challenge. J Phycol 2010;46:220–35.

Henley SF, Ganeshram RS, Annett AL et al. Macronutrient sup-
ply, uptake and recycling in the coastal ocean of the west
Antarctic Peninsula. Deep Sea Res Part II Top Stud Oceanogr
2017;139:58–76.

Huson DH, Auch AF, Qi J et al. MEGAN analysis of metagenomic
data. Genome Res 2007;17:377–86.

Joubert WR, Thomalla SJ, Waldron HN et al. Nitrogen uptake by
phytoplankton in the Atlantic sector of the Southern Ocean
during late austral summer. Biogeosciences 2011;8:2947–59.

KavanaughMT, Abdala FN, DucklowHW et al. Effect of continen-
tal shelf canyons on phytoplankton biomass and community
composition along the western Antarctic Peninsula.Mar Ecol
Prog Ser 2015;524:11–26.

Kirchman DL, Stegman MR, Nikrad MP et al. Abundance, size,
and activity of aerobic anoxygenic phototrophic bacteria in
coastal waters of the West Antarctic Peninsula. Aquat Microb
Ecol 2014;73:41–9.

Koike I, Holm-Hansen O, Biggs DC. Inorganic nitrogen
metabolism by Antarctic phytoplankton with special refer-
ence to ammonium cycling.Mar Ecol Prog Ser 1986;30:105–16.
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