
Cyanobacteria have radically changed our biosphere
during their 3.5 billion years of existence (Schopf 1996).
They are among the organisms that contributed to two
major evolutionary episodes: the introduction of
oxygenic photosynthesis, which led to the oxygenation
of the atmosphere, and an endosymbiotic event with a
non-pigmented eukaryote, which gave rise to all algae
and plants (Miyagishima 2005). Cyanobacteria are now
also recognized as the primary diazotrophs (nitrogen-
fixing organisms) in the oceans and have thereby
revolutionized our view on sources contributing to the
global nitrogen cycle. Research on marine cyanobacteria
has in recent years generated new insights into their
global distribution and diversity, and has stressed their
significance as macronutrient scavengers and primary
producers (Karl et al. 2002).

Marine planktonic unicellular cyanobacteria

The free-floating, planktonic, marine cyanobacteria
dominate quantitatively in oceans and on a global scale,
but for unknown reasons, these populations have a more
restricted morphological and genetic diversity compared
with for instance, their limnic counterparts. Among
these, the small (�1 mm cell diameter and a genome of
average 2 Mb) unicellular cyanobacterium Prochloro-
coccus is now appreciated to be the most common, and
probably the smallest photosynthetic unit on Earth
(Rocap et al. 2003). The genus Prochlorococcus
comprises physiologically distinct eco-types depending
on e.g. light and nutrient gradients, and is together with
the likewise unicellular and common genus

Synechococcus, of immense importance for carbon
sequestration into ocean ecosystems (Bouman et al.
2006; Coleman et al. 2006; Johnson et al. 2006; Rocap et
al. 2003). However, while these cyanobacteria are unable
to fix nitrogen, some other marine unicellular
representatives are now known to be potent nitrogen
fixers (Montoya et al. 2004; Zehr et al. 2001). A common
ancestry (16S rRNA) was recently proposed for
populations of unicellular marine cyanobacteria in the
Atlantic and Pacific Oceans, while recent data show that
the diazotrophic (nifH ) representatives within this group
apparently diverged later (Falcon et al. 2004).

Filamentous planktonic cyanobacteria:
bloom formation and toxin production

Bloom formation (surface accumulations) by cyano-
bacteria in oceans is a recurrent, poorly understood
phenomenon. For example, conspicuous diazotrophic
blooms regularly appear in the tropical and subtropical
areas of the Atlantic and Pacific Ocean (Trichodesmium),
along the coast of the southeast Pacific Ocean (Lyngbya)
and in the Baltic Sea (Nodularia and Aphanizomenon).
In particular, in the Baltic Sea the Nodularia and
Aphanizomenon blooms typically occur in the summer,
when water is warm and stratified, but their timing and
location have proved difficult to predict. Some bloom-
forming cyanobacteria also produce toxins, which are
actually more toxic to human and terrestrial mammals
than to aquatic biota. Neurotoxins and hepatotoxins
produced by some of the bloom-forming cyanobacteria,
such as Nodularia (Laamanen et al. 2001; Sivonen et al.
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1989) and Lyngbya majuscula (Li et al. 2001), cause
economic losses to the surrounding societies, ranging
from disturbance in tourism due to the unpleasant smell,
skin irritation and gastrointestinal problems of the
swimmers, to death of fish and domestic animals
drinking the water. Interestingly, and for an unknown
reason, blooms of toxic cyanobacterial species may
contain both toxic and non-toxic strains. Since the
morphological discrimination between the two types is
not possible (Dittmann and Wiegand 2006), PCR-based
techniques targeting the toxin biosynthesis genes were
therefore developed and became popular for the
detection and quantification of toxic strains (Dittmann
and Wiegand 2006). Cyanotoxins are secondary
metabolites, their biological function and the regulatory
mechanisms controlling their biosynthesis remain largely
unknown. Toxin production was considered a restricted
phenomenon to some cyanobacteria genera until the
potential ‘slow’ neurotoxin (b-methyl-L-amino alanin;
BMAA) was discovered to be produced by most
cyanobacteria (Cox et al. 2005; see also article by
Jonasson et al. in this issue).

Marine benthic cyanobacteria

The bottom-dwelling benthic cyanobacteria occupying
coastal marine ecosystems, exhibit a wider morpho-
logical and genetic variability, while their total biomass
is considerably smaller than that of the planktonic forms.
In these oceanic fringes, mixed cyanobacterial
morphologies occur as complex biofilms (Bauer et al.
2008; Charpy et al. 2007; Charpy-Roubaud et al. 2001;
Díez et al. 2007), as well-organized and laminated mats
(Díez et al. 2007; Golubic et al. 1999; Stal 2000), and as
ancient stromatolites (Stal 2000; Steppe et al. 2001).
Representative cyanobacteria in these habitats are the
larger filamentous genera such as Lyngbya, and
potentially members of the benthic LPP group. Together
these groups include several aerobic and anaerobic
diazotrophs. The fact that there is a close relationship
between geographically widely separated phylotypes of
the filamentous small-celled ‘LPP-group B’ (e.g.
Leptolyngbya), as shown using 16S rRNA and nifH
genes (the latter encoding a subunit of the nitrogen-
fixing enzyme complex, nitrogenase), may point to a
global distribution and ecological importance of the LPP
group (Díez et al. 2007). A common origin for the
planktonic Trichodesmium and the benthic Blennothrix
(or Hydrocoleum) genera was also recently suggested
(Abed et al. 2006). The marine cyanobacterial radiation
thus consists of lineages of phylogenetically related
morpho- and genotypes, although the origin of their
evolution and diversification is still unclear.

Nitrogen fixation and cellular differentiation

Although nitrogen is the most abundant gas in the earth
biosphere, it is available only for the organisms, such as
cyanobacteria, that are capable of nitrogen fixation.
Nitrogen fixation is catalyzed by the enzyme nitrogenase
which is oxygen sensitive. Cyanobacteria capable of
developing the specific nitrogen-fixing cell type known
as a heterocyst, are common in soils and limnic
environments, but for unknown reasons rare in oceans,
and mostly confined to diatom symbioses (such as the
heterocystous Richelia spp.). The morphology and
physiology of heterocysts is adjusted to protect the
oxygen-sensitive nitrogenase enzyme and was con-
sidered the norm for daytime diazotrophy until a novel
cell type, the diazocyte, was discovered in
Trichodesmium (Figure 1). Like in heterocysts,
nitrogenase is contained in the diazocytes, making this
cell type functionally equivalent to the heterocyst (El-
Shehawy et al. 2003). Heterocysts and diazocytes may
owe their differentiation strategies to terrestrial and
oceanic adaptations, respectively. A second marine genus
developing diazocytes, Katagnymene, was recently
shown to belong within the Trichodesmium radiation
(Lundgren et al. 2005). To decipher molecular
mechanisms related to diazocyte development and
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Figure 1. Light micrograph illustrating the occurrence of nitrogenase
(blue) in central parts of filaments of a Trichodesmium IMS 101 colony.
The blue immuno-fluorescence is restricted to 1–4 subsets of cells
(10–15%) in each filament. The protocol followed was that of El-
Shehawy et al. (2003). Size bar, 10 mm.



whether limnic species of Katagnymene differentiate
diazocytes is now of great interest. Why heterocystous
cyanobacteria are rare in tropical and subtropical oceans
is still a puzzle, although high temperatures have been
proposed to play a role (Staal et al. 2003). Information is
therefore needed on the occurrence of marine
diazotrophic cyanobacteria from the colder oligotrophic
Antarctic and Arctic Oceans.

Combating nutrient limitation in the ocean

Because cyanobacteria often live under strong nitrogen
limitation in oceans, a substantial proportion of these
marine communities consist of nitrogen-fixing cyano-
bacteria. The planktonic filamentous (non-heterocystous)
genus Trichodesmium is the main nitrogen-fixer in
warmer oceans (Karl et al. 2002). This genus alone,
together with some diazotrophic unicellular and
symbiotic cyanobacteria, is presently estimated to
provide about half of all ‘new’ nitrogen sequestered into
the global biosphere (Karl et al. 2002). Indeed, a recent
transatlantic survey suggests that the abundance of
Trichodesmium colonies is even higher than previously
reported, which further underscores their significance as
nitrogen scavengers and importance in the global
nitrogen cycle (Davis and McGillicuddy 2006). Some
other diazotrophic cyanobacteria are more restricted
geographically, but may still be tremendously important.
These include for instance the planktonic filamentous
heterocystous genera Nodularia and Aphanizomenon
spp. found in the temperate Baltic Sea, which, like
Trichodesmium, form large surface ‘blooms’.

Marine cyanobacterial diazotrophs are also well-
known endosymbionts of bloom-forming diatoms such
as Hemiaulus and Rhizosolenia found in tropical and
subtropical parts of the oceans (Foster and Zehr 2006;
Villareal 1991). Cyanobacteria with diazotrophic poten-
tial may also occur as symbionts in a coral (Montastraea
cavernosa) (Lesser et al. 2004) and a dinoflagellate (the
dinophysoid Histioneis) (Foster et al. 2006b).

Marine cyanobacteria require highly efficient scaveng-
ing systems to acquire key elements besides C via their
photosynthesis and N via nitrogen fixation. Research in
this area has focused on the uptake and transport of
phosphate and iron. Evidence shows that marine dia-
zotrophic cyanobacteria are adapted to hydrolyze and
scavenge organic phosphate sources, such as phospho-
nates (Trichodesmium; Dyhrman et al. 2006), and phos-
phomonoesters (Crocosphera watsonii; Dyhrman and
Haley 2006). The diazotrophic cyanobacteria also exhibit
a high demand for iron, which is an integral part of the
nitrogenase complex and other cellular processes, includ-
ing photosynthesis. The various organisms handle iron
limitation in different ways. Trichodesmium possesses a
high-affinity iron scavenging system (Webb et al. 2001),

but no siderophores. The first iron storage protein in ma-
rine microorganisms was identified in the genome of Tri-
chodesmium erythraeum and belongs to the Dps family
(DNA binding protein from starved cells) (Castruita et
al. 2006). Lyngbya majuscula produces iron-reducing su-
peroxide radicals to increase iron uptake (Rose et al.
2005). It is not known how Baltic Sea cyanobacteria
combat iron limitation.

Genome sequencing: filling the gaps

Although cyanobacteria are among the top five
sequenced phyla (�thirty cyanobacterial genomes
completely sequenced), genome sequences for marine
diazotrophic cyanobacteria are largely lacking. The only
genome sequence available is that of Trichodesmium
IMS101. Upcoming sequencing plans, however, include
both diazotrophic unicellular cyanobacteria (Croco-
sphaera watsonii and Cyanothece sp.) and the
endosymbiont of diatoms (Richelia). The stage may then
be set to compare and contrast molecular strategies used
by marine diazotrophs (i.e. how to decouple the
incompatible N2 fixation and oxygenic photosynthesis
processes). Until today, comparative genomic analyses of
cyanobacteria have revealed metabolic pathways,
exclusive protein families and frequent lateral gene
transfer events (Kechris et al. 2006; Mulkidjanian et al.
2006; Zhaxybayeva et al. 2006. Also, the recent
application of metagenomics to oceanic microbes is
creating enormous datasets on the genetic diversity and
metabolic pathways in marine microbes, only a few
unicellular non-diazotrophic cyanobacteria have been
encountered (�1 mm cell fractions examined) (Rusch et
al. 2007). Genomic reconstruction is also complicated by
the complex communities that comprise many
genera/species (Tyson et al. 2004). Connecting eDNA
metagenomic data to uncultured individual
cyanobacterial morphotypes will require visual
observations using means such as LM, SEM, or TEM.

Concluding remark

Although marine diazotrophic cyanobacteria are of
documented ecological and biogeochemical significance
in global N cycling, their cell biology is far from being
fully evaluated. Continued research is needed to explore
developmental and cellular processes governing nutrient
sequestration capacities, toxin production, and their
spectacular surface blooms if we are to fully understand
their role in oceans. Novel gene and genome sequences
will aid in refining timescales for marine cyanobacterial
evolution and permit identification of additional diazo-
trophic actors and diazotrophic strategies and provide
rare opportunities to further understand fundamental
global events related to marine cyanobacteria. At this
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time, a great diversity has been documented among
marine diazotrophs, but their quantitative and qualitative
significance need further scrutiny.
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